Protection Feature

Distribution protection -Only magnetic release

Only magnetic release	Frame size $I_{n m}(A)$	Rated current $I_{n}(A)$	Setting of short circuit protection current	Setting value of short circuit protection current $I_{i}(A)$ and allowance	Release time

	Frame size $\mathrm{I}_{\mathrm{nm}}(\mathrm{A})$	Rated current $\mathrm{I}_{\mathrm{n}}(\mathbf{A})$	Setting of neutral pole protection current	Setting value of neutral pole short circuit protection current (A) and allowance	Release time
Neutral pole protection (code of N poles C/D)	63	10~63	Fixed	$\mathrm{l}_{\mathrm{i}}, \pm 20 \%$	Instantaneous action
	125	10~125	Fixed	l,$\pm 20 \%$	
	160	32~160	Fixed	li, $\pm 20 \%$	
	250	125~250	Fixed	$\mathrm{l}_{1}, \pm 20 \%$	
	400	250~400	Fixed	I_{i}, $\pm 20 \%$	
	630	400~630	Fixed	$\mathrm{l}_{1}, \pm 20 \%$	
	800	630~800	Fixed	l_{i}, $\pm 20 \%$	
	1000	800~1000	Fixed	$\mathrm{l}_{1}, \pm 20 \%$	
	1250	1000~1250	Adjustable	$\mathrm{I}_{\mathrm{i}}:(7-8-9-10) \mathrm{I}_{n}$	
	1600	1000~1600	Adjustable	$\mathrm{I}_{\mathrm{i}}:(7-8-9-10) \mathrm{I}_{n}$	

Distribution protection-Thermal magnetic release

Protection Feature

Distribution protection-Electronic release

Electronic release	Frame size $\mathrm{I}_{\mathrm{mm}}(\mathrm{A})$	Rated current $\mathrm{I}_{\mathrm{n}}(\mathrm{A})$	Setting of overcurrent protection $\mathrm{I}_{\mathrm{R}}(\mathrm{A})$	Release feature/time
Overload long-timedelay protection	160	32	16-18-20-22-25-28-30-32	$I^{2} t=$ constant $1.05 \mathrm{I}_{\mathrm{R}}$, no action within 2 h $1.3 I_{R}$, action with 1 h $\begin{aligned} & 2 I_{R}, t_{R}=(12-60-80-100) \mathrm{s}, \mathrm{I}_{\mathrm{nm}}<400 \mathrm{~A} \\ & 21_{\mathrm{R}}, \mathrm{t}_{\mathrm{R}}=(12-60-100-150) \mathrm{s}, \mathrm{I}_{\mathrm{nm}} \geq 400 \mathrm{~A} \end{aligned}$
		63	32-36-40-45-50-56-60-63	
		125	63-70-75-80-90-100-110-125	
		160	80-90-100-110-125-140-150-160	
	250	250	125-140-150-160-180-200-225-250	
	400	400	200-225-250-280-300-315-350-400	
	630	630	400-450-480-500-530-560-600-630	
	1000	800	630-660-680-700-720-750-780-800	
		1000	630-680-720-780-820-900-950-1000	
	1250	1250	630-700-800-900-1000-1100-1200-1250	
	1600	1600	800-900-1000-1100-1250-1400-1500-1600	
Action allowance				$\pm 10 \%$
Short circuit short-timedelay protection	All series	32~1600	$\mathrm{Isd}_{\text {d }}=(1.5-2-3-4-5-6-8) \mathrm{I}_{\mathrm{R}}+$ OFF	$\mathrm{t}_{\mathrm{sd}}=0.3, \pm 0.06 \mathrm{~s}$
Action allowance			$\pm 15 \%$	
Instantaneous protection	160~1600	32~1600	$\mathrm{I}_{\mathrm{i}}=(2-3-4-6-8-10-12) \mathrm{I}_{\mathrm{R}}+$ OFF	Instantaneous action
Action allowance			$\pm 15 \%$	
Neutral pole protection (code of four pole C/D)	All series	32~1600	$\mathrm{I}_{\mathrm{RN}}=(0.5,1) \mathrm{I}_{\mathrm{n}}+$ OFF, Adjustable	
Indication of overload	All series	32~1600	$\mathrm{I}_{\mathrm{R} 0}=1.2 \mathrm{I}_{\mathrm{R}}$	

Motor protection-Only magnetic release

Only magnetic release	Frame size $I_{n m}(A)$	Rated current $I_{n}(A)$	Setting of short circuit protection current	Setting value of short circuit protection current $I_{i}(A)$ and allowance	Release time
	63	$10 \sim 63$	Fixed	$121_{n}, \pm 20 \%$	
Short circuit protection	250	$10 \sim 125$	Fixed	$12 I_{n}, \pm 20 \%$	

	Frame size $\mathrm{I}_{\mathrm{nm}}(\mathbf{A})$	Rated current $\mathrm{I}_{\mathrm{n}}(\mathbf{A})$	Setting of neutral pole protection current	Setting value of neutral pole overload protection current(A) Setting value neutral pole short circuit protection current(A)
Neutral pole protection (code of N pole C/D)	63	125	$10 \sim 63$	Fixed
	250	$10 \sim 125$	$\mathrm{I}_{\mathrm{R}}, \mathrm{I}_{\mathrm{i}}, \pm 20 \%$	
	400	125,160	Fixed	$\mathrm{I}_{\mathrm{R}}, \mathrm{I}_{\mathrm{i}}, \pm 20 \%$
	125,160	Fixed	$\mathrm{I}_{\mathrm{R}}, \mathrm{I}_{\mathrm{l}}, \pm 20 \%$	
	630	$160 \sim 250$	Fixed	$\mathrm{I}_{\mathrm{R}}, \mathrm{I}_{\mathrm{V}}, \pm 20 \%$
	800	$315 \sim 400$	Fixed	$\mathrm{I}_{\mathrm{R}}, \mathrm{I}_{\mathrm{l}}, \pm 20 \%$

Protection Feature

Motor protection-Thermal magnetic release

Thermal magnetic release	Frame size $\mathbf{I}_{\mathrm{nm}}(\mathbf{A})$	Rated current $\mathrm{I}_{\mathrm{n}}(\mathbf{A})$	Setting of overcurrent protection
			Release feature
Overload protection	$125 \sim 800$	$25 \sim 630 \mathrm{~A}$	Fixed

Thermal magnetic release	Frame size $I_{n m}(\mathbf{A})$	Rated current $I_{n}(\mathbf{A})$	Setting of short circuit protection current	Setting value of short circuit protection current $I_{i}(\mathbf{A})$ and allowance
	63	$10 \sim 63$	Fixed	$12 I_{n}, \pm 20 \%$
Sholease time				
protection circuit	125	$10 \sim 125$	Fixed	$12 I_{n}, \pm 20 \%$

	Frame size $\mathrm{I}_{\mathrm{nm}}(\mathrm{A})$	Rated current $\mathrm{I}_{\mathrm{n}}(\mathrm{A})$	Setting of neutral pole protection current	Setting value of neutral pole overload protection current(A) Setting value neutral pole short circuit protection current(A)
Neutral pole protection (code of N pole C/D)	63	10~63	Fixed	$\mathrm{I}_{\mathrm{R},} \mathrm{I}_{\mathrm{i},} \pm 20 \%$
	125	10~125	Fixed	$\mathrm{I}_{\mathrm{R},} \mathrm{I}_{\mathrm{i}} \pm 20 \%$
	160	125,160	Fixed	$\mathrm{I}_{\mathrm{R},} \mathrm{I}_{\mathrm{i}} \pm 20 \%$
	160	125,160	Fixed	$\mathrm{I}_{\mathrm{R},} \mathrm{I}_{\mathrm{i}} \pm 20 \%$
	250	160~250	Fixed	$\mathrm{I}_{\mathrm{R}}, \mathrm{I}_{\mathrm{i}} \pm 20 \%$
	400	315~400	Fixed	$\mathrm{I}_{\mathrm{R},} \mathrm{I}_{\mathrm{i}} \pm 20 \%$
	630	400~630	Fixed	$\mathrm{I}_{\mathrm{R},}, \mathrm{I}_{\mathrm{i}} \pm 20 \%$
	800	630~800	Fixed	$\mathrm{I}_{\mathrm{R}}, \mathrm{I}_{\mathrm{i}} \pm 20 \%$

Motor protection—Electronic release

Inner Accessories

AX auxiliary contact

Function: Remote indication of "ON" , "OFF" position of the breaker, connect to the control circuit of breaker.

Model description
Applicable product: general (omit), residual current type (LE)

Installation site code : left side installation (code L) and right side
installation (code R)

Frame size code (see table1)

Table1 Frame size code

Frame size	$\mathbf{6 3 / 1 2 5}$	$\mathbf{1 6 0}$	$\mathbf{2 5 0}$	$\mathbf{4 0 0 / 6 3 0}$	$\mathbf{8 0 0}$	$\mathbf{1 0 0 0}$	$1250 / 1600$
Code	M 1	M 2	M 3	M 4	M 5	M 6	M 7

For example: 63/125 frame right auxiliary contact code: AX-M1R
To indicate the "ON" or "OFF "state of circuit breaker

AX	Opening or free trip OFF \& TRIP	FX12 FX14	FX11 FX14	
	Closing ON			

Electrical characteristics

Operational voltage (V)	AC-15	DC-13		
	AC380/400/415	DC110	DC220	
Operational current (A)	$63 \sim 320$	0.26	0.14	0.14
	$400 \sim 1000$	0.4	0.2	0.2
	1600	0.47	0.27	0.27

Wiring diagram
Auxiliary contact can be wired with indicator light.
The operator can know the location of switch " ON " or " OFF "
without open the power
distribution cabinet via indicator light.

Inner Accessories

AL alarm contact

Function: It is mainly used to provide signal in case of failure of circuit breaker or free trip. Reasons for alarm contact to send failure indication signal:

- Overload or short circuit trip
- Under voltage trip
- Residual current operated trip
- Manual free trip

Model description
AL- $\square \square \square \square$
T T丁T Applicable product: general (omit), residual current type (LE)
Applicable product poles: $2 \mathrm{P}(2)$, general (omit)
Installation site code : left side installation (code L) and right side installation (code R)

Frame size code (see table1)
Name code of alarm contact
For instance: the left alarm contact code of 63/125 frame is: AL-M1L
To indicate the "ON" or "OFF" state of circuit breaker

AL	Open or close OFF \& ON	B 12 B 14		B11
	TRIP	B12		

Electrical characteristics

Operational voltage (V)	AC-15	DC-13		
	AC380/400/415	DC110	DC220	
Operational current (A)	$63 \sim 320$	0.26	0.14	0.14
	$400 \sim 1000$	0.4	0.2	0.2
	1600	0.47	0.27	0.27

Wiring diagram

Alarm contact can be connected with indicator light, buzzer and the like, and thus the operator can be timely informed in case of release of circuit breaker.

Inner Accessories

UVT under voltage release

Function: To switch off the circuit breaker in case of under voltage of power supply so as to protect the electric equipment.

- The under voltage release shall switch off the circuit breaker reliably when the power supply voltage decreases (or even decrease slowly) to $70 \%-35 \%$ of rated control power supply voltage.
- It shall ensure the closing of breaker when the power supply voltage equals to or is more than 85% of rated control power supply voltage of under voltage release.
- The under voltage release shall be able to prevent closing of circuit breaker when the supply voltage is less than 35% of rated control supply voltage of under voltage release.

Model description

Applicable product: Thermal-magnetic (omit), residual current type(LE): Electronic(E)

Applicable product poles: $2 \mathrm{P}(2)$, general (omit)
Installation site code : left side installation (code L) and right side installation (code R)

Applicable voltage code (see table2, only A1, A2 are applicable)
Frame size code (see table1)
Name code of under voltage release
Table2 Applicable voltage code

Voltage	AC230V	AC400V	DC24V	DC110V	DC220V
Code	A1	A2	D1	D2	D3

For example: right under voltage release code of 63/125 frame 400V: UV T-M1A2
Electrical characteristics

Frame size (A)	Under voltage release code (VA or W)	
	AC230V	AC400V
$63 / 125$	3.1	4
160	3.2	3.9
$250 / 320$	3.3	4.3
$400 / 630$	2.5	3.6
800	1.6	2
1000	1.6	2
1600	1.6	2

Operating characteristics

Operating conditions $\left(\mathrm{XU}_{6}\right)$	Switching off reliably	$35 \% \sim 70 \%$
	Preventing closing	$\leq 35 \%$
	Closing reliably	$\geq 85 \%$
Response time		1 s
Operation times		1000

Inner Accessories

SHT shunt release

Function: Shunt release is an accessory for remote control.
The shunt release shall be able to make circuit breaker operating reliably when the power voltage equals to any voltage within the range of $70 \% \sim 110 \%$ of rated control power voltage.

Model description
SHT-

- $\square \square \square \square \square$

Applicable product: general (omit), residual current type (LE) Applicable product poles: $2 \mathrm{P}(2)$, general (omit)

Installation site code : left side installation (code L) and right side installation (code R)

Applicable voltage code (see table2, only A1, A2 are applicable)
Frame size code (see table1)
Name code of shunt release
For example: left shunt release code of 63/125 housing 400V: SHT-M1A2L
Electrical characteristics

Frame size(A)	Code of under voltage release (VA or W)				
	AC230V	AC400V	DC24V	DC110V	DC110V
$63 / 125$	76	91.5	91	80	136
160	73	96.5	91	52.8	71
$250 / 320$	68.5	112	85.3	58	66
$400 / 630$	62.5	68	100	105	56
800	153	168	120	105	56
1000	153	163	120	105	56
$1250 / 1600$	175	183	140	143	286

Operating characteristics

Reliable operating voltage		$70 \% \sim 110 \% \mathrm{XU}_{6}$
Conduction time	minimum	10 ms
(pulse mode)	maximum	1 s
Response time		30 ms
Number of operations		1000

Wiring diagram

External Accessories

MD motor-driven mechanism

Function: it is applicable for switching circuit breaker on and off and retrip remotely, as well as automation application.

Model description
MD - $\square \square \square \square$
Applicable product: Thermal-magnetic (omit), Electronic type (E), residual current type (LE).

Product breaking capacity: General (omit), S,H.
Applicable voltage code (see table2, only A1, A2 are applicable)
Frame size code (see table1)
Name code of motor-driven mechanism
For example: motor driven code of 63/125 frame moulded case circuit breaker 400V: MD-M1A2

Electrical characteristics

Model	$63 / 125 / 250 / 320$ frame	All series
Structural style	Electromagnet	DC-AC
Voltage specification	AC230V, 400V	AC110V, 230V, 400V,
Rated frequency	50 Hz	DC24V, 110V, 220V

Wiring diagram

Description: SB1, SB2 is separately the on and off button;
P1, P2 are the external power line terminal. P1 will be connected to "+" , and P2 will be connected to "-" if the external power source is DC.

Motor-driven mechanism

Installation sketch of electric operational mechanism

External Accessories

ERH manual operational mechanism

Function: It realizes switching on, off and restriping via rotary handle according to human body mechanics with unique design and transmission device.

Model description
ERH $-\square$
\square

Category code of adaptive products: thermal magnetic type;
electronic type (no code)
residual current (code LE)

Frame size (table 1)
Name code of manual operational mechanism
For example: manual operational mechanism code of 63/125 frame residual current operating: ERH-M1LE

Installation diagram of manual operational mechanism

Frame size	63A	160A	250A	400A	800A	1000A	1250/1600A
	125A		320A	630A			
Installation sizes(mm)	53.5	61.5	63.5	98	97	97	68.5

Note: Installation dimension of thermal magnetic type moulded circuit breaker is 98 mm , and for residual current circuit breaker is 96 mm .

PIA plug-in basement

Function: It is convenient to replace moulded case circuit breaker without disassembling inlet-outlet line.
Model description
PIA- $\square \square$
Applicable product poles: $3(3 p), 4(4 p)$
Frame size code(see table1)

For example: plug-in basement code of 160 frame three-pole circuit breaker: PIA-M2 3

External Accessories

FCP front connection plate

Function: It grants the breaker a flexible line connecting way. The phase spacing can increase via accessories so as to increase the electrical space between the adjacent phases of line terminal of input and output of breaker, and thus increase the safety among the lines.

Model description:

FCP $-\square \square$| Pole number code of adaptive product: two poles (code 2), three poles |
| :--- |
| (code 3), four poles (code 4) |
| Frame size code (table 1) |

Name code of front connection plate

RCP rear connection plate

Function: It grants the breaker with flexible line connecting way, which is used to match the switch board or other requirements so as to realize the line connecting on the back of the installation plate.

Model descriptionPole number code of adaptive product: two poles (code 2), three poles (code 3), four poles (code 4)

Frame size code (table 1)
Name code of rear connection plate
For example: 63/125 frame three-pole circuit breaker with rear connection plate code: RCP-M 13

External Accessories

Handheld test module (PTU-1)

Handheld test module is the extension of the circuit breaker function, it can connection circuit breaker through USB interface, also the information of circuit breaker can be displayed in the handheld test module. User can query and set the parameters of the circuit breaker as needed. Users can easily monitor and repair the circuit breaker.

- Features:
- Query the factory parameters, shell current, rated current, communication address and other informations of the circuit breaker;
- Query overload long delay, short delay, short circuit instantaneous, N phase protection, ground fault current value,operating time and other settings parameters;
- Query real-time phase current value of the circuit breaker ABCN phase, the last fault alarm current parameter value;
- Set the protection characteristic parameter of circuit breaker.(Not available for Dial-type electronic circuit breakers);
- Can set the display brightness, screensaver power, serial communication parameters and circuit breaker communication address;
- Circuit breaker analog signal trip test.

Power supply	Single 14500 lithium-ion battery
Battery capacity	$\geq 800 \mathrm{mAh}$
Operational Voltage	$3.7 \sim 4.2 \mathrm{~V}$
Charging method	USB +5 V
Control mode	Pushbutton
LCD screen	3.2 inch TFT color, vertical screen display
Backlight brightness	$1 \sim 100$ level adjustment
Screensaver saving	30 to 120 seconds can be set, can be closed
Battery power monitoring	Yes
Continuous working hours	2 h
Operating temperature	$-20^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$
Wired communication	Protocol: Modbus-RTU
Serial communication rate: 1200/2400/4800/9600/19200bps	

- Operating:
- Use five navigation keys with three shortcuts and one power key, it can provide users with simple and quick operation experience;
- The five navigation keys default to up, down, left, right, and confirmation;
- The three shortcut keys are R, W, T, respectively, for the read parameters, set the parameters of the test test trip;
- Power key press two seconds to switch operation, and operating tips are on the bottom of each pages.

External Accessories

Modbus Communication module(COMA-3)

COMA-3 external Modbus communication module (Electronic type) is the extension of the circuit breaker function. Through the connection with the circuit breaker communication interface to achieve the physical layer of signal conversion. The interface of the RS485 communication module can be connected to the host computer and realize the remote function of the circuit breaker.

- Features:
- Built-in power supply module, can connect with an external power of 220 V AC or 24 V DC;
- Features:The communication module will supplies power to the circuit breaker electronic release;
- Features:Can convert the communication single between the circuit breaker and host computer;
- Features:Remote control of two relay output by receiving the instructions of the host computer;
- Features:Meet the users` need of the circuit breaker network construction.
- Characteristic

Voltage	DC24V
Power consumption	$\leq 2.8 \mathrm{~W}$
Communication rate	RS485 Communication baud rate: 1200/2400/4800/9600/19200 bps
Relay output capacity	$5 \mathrm{~A}, \mathrm{DC} 30 \mathrm{~V}$
Operating temperature	$-20^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$

- Installation
- Installation via DIN35-7.5 standard rail.

Complementary Data

Altitude reducing capacity and correction coefficient table

It has no impact on the breaker feature where the altitude equals to 2000 m or below. The breaker electrical feature shall be corrected according to the following table.

Altitude (m)	2000	3000	4000	5000
Correction coefficient of operating current	1 ln	0.94In	0.88In	0.85In
Maximum operationnal voltage (V)	690	600	500	440
Insulation voltage (V)	1000	800	700	600
Power frequency withstand voltage (V)	3000	2500	2000	1800

Plug-in and rear connection current derating table

Frame size	Rated current(A)	Plug-in derating current(A)	Note
630	500	450	
	630	520	
	700	650	
	800	720	
	900	850	
	1000	920	

Note: There is no need of current derating as no specification in the table

Altitude derating curve

Maximum operation

Electronic type derating coefficient table

Frame size	Rated current	Long-time delay current setting	$-25^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}$	$-15^{\circ} \mathrm{C}$	$-10^{\circ} \mathrm{C}$	$-5^{\circ} \mathrm{C}$	$-0^{\circ} \mathrm{C}$	Rated current	$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$65^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$
NXMS-160	$\begin{aligned} & 32 \mathrm{~A}, ~ 63 \mathrm{~A} \\ & 125 \mathrm{~A}, ~ 160 \mathrm{~A} \end{aligned}$	$\mathrm{I}_{\mathrm{R}}<0.65 \mathrm{ln}$	$1.2 \mathrm{I}_{\mathrm{R}}$	$1.2 \mathrm{I}_{\mathrm{R}}$	$1.1 I_{\text {R }}$	$1.1 I_{R}$	$1.05 I_{\text {R }}$	$1.05 I_{R}$	32A, 63A, 125A	1.01 n			0.91 n	0.85 In	0.81 n	0.81n
		$\mathrm{I}_{\mathrm{R}}>0.65 \mathrm{ln}$	$1.01{ }_{\text {R }}$						160A	1.01n		0.91 n	0.85In	0.81n	0.7 In	0.71n
NXMS-250	250A	$\mathrm{I}_{\mathrm{R}}<0.58 \mathrm{ln}$	$1.15 I_{\text {R }}$	$1.15 I_{R}$	$1.15 I_{\text {R }}$	$1.05 I_{\text {R }}$	$1.051_{\text {R }}$	$1.05 I_{R}$	250A	1.OIn			0.91 n	0.85 ln	0.8In	0.8In
		$\mathrm{I}_{\mathrm{R}}>0.58 \mathrm{ln}$	$1.01{ }_{R}$													
NXMS-630	400A, 630A	ALL	$1.01{ }_{\text {R }}$						400A	1.01n			0.91 n	0.85In	$0.81 n$	0.81n
									630A	1.01 n		0.91 n	0.85 ln	0.81n	0.7 ln	0.71n
NXMS-1000	800A, 1000A	ALL	$1.0 \mathrm{I}_{\mathrm{R}}$						800A	1.01n			0.91 n	0.85 In	$0.81 n$	0.81n

Power loss table

Product model	Making current(A)	Single pole resistance (m)	3/4pole total power loss		
			Front connection	Rear connection	Plug-in rear connection
NXM-63	63	0.75	24	27	28
NXM-125	125	0.72	28	31	32
NXM-160	160	0.4	60	87	89
NXM-250	250	0.2	63	90	90
NXM-400	400	0.15	68	72	100
NXM-630	630	0.14	180	190	200
NXM-800	800	0.08	200	230	290
NXM-1000	1000	0.06	250	280	300
NXM-1600	1600	0.027	280	-	-
NXMS-160	160	0.2	40	50	62
NXMS-250	250	0.18	50	75	86
NXMS-400	400	0.1	58	87	90
NXMS-630	630	0.08	110	120	130
NXMS-1000	1000	0.05	140	155	167
NXMS-1600	1600	0.02	250	-	-
NXMLE-160	160	0.73	60	87	89
NXMLE-250	250	0.27	63	90	90
NXMLE-400	400	0.11	68	72	100
NXMLE-630	630	0.09	180	190	200
NXHM-63	63	0.4	28	31	35
NXHM-125	125	0.6	60	87	87
NXHM-160	160	0.2	40	50	62
NXHM-250	250	0.18	50	75	86
NXHM-320	320	0.19	55	80	89
NXHM-400	400	0.1	58	87	90
NXHM-630	630	0.08	110	120	130
NXHM-800	800	0.05	200	230	290
NXHM-1000	1000	0.02	140	155	167

Parameter table of connecting cable/copper bar

The reference section of connecting cable/copper bar with different rated current is as follows.

Rated current (A)	Section of wire $\left(\mathbf{m m}^{2}\right)$
10	1.5
16,20	2.5
25	4.0
32	6.0
40,50	10
63	16
$70,75,80$	25
100	35
$125,140,150$	50
160	70
$180,200,225$	95
250	120
$280,315,320,350$	185
400	240

